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Abstract. We study the B-parameter (“bag factor”) for B − B mixing within a
recently developed heavy-light chiral quark model. Non-factorizable contributions in
terms of gluon condensates and chiral corrections are calculated. In addition, we also
consider 1/mQ corrections within heavy quark effective field theory. Perturbative QCD
effects below µ = mb known from other work are also included. Considering two
sets of input parameters, we find that the renormalization invariant B-parameter is
B̂ = 1.51 ± 0.09 for Bd and B̂ = 1.40 ± 0.16 for Bs.

PACS: 13.25.Hw; 12.39.Fe; 12.39.Hg

1 Introduction

Studies of the neutral K-meson system have played a major role in modern
particle physics [1]. Because of weak interactions, a neutral K meson may be
converted to a neutral K meson. This process, known as K − K mixing, de-
termines both the mass-difference between the physical neutral states KL and
KS and the dominating CP-violating effect in neutral K-meson decays to pions
(the ε-effect). The neutral B-meson system has rather similar properties as the
neutral K-system. The difference when going to B − B mixing is the impor-
tance of other KM quark mixing factors and other mass scales, in particular the
B-mesons are about ten times heavier than the K-mesons.

In general, non-leptonic processes may be described by an effective La-
grangian which is a linear combination of quark operators. The (Wilson) co-
efficients of the operators can be calculated in perturbation theory combined
with the renormalization group equations [2]. At quark level, the leading order
diagrams for B−B mixing are given by the so called box diagram. This diagram
has double W -exchange between two quark lines, and generates an effective La-
grangian(Hamiltonian) for the quark transition b̄d → d̄b. This Lagrangian has
(for all practical purposes) only one operator times a Wilson coefficient con-
taining the effects of the virtual (u, c, t) quarks running in the loop. This Wil-
son coefficient has also been corrected for perturbative QCD effects within the
renormalization group equations. Such calculations has been performed to next
to leading order. For Bs − Bs mixing one considers the corresponding b̄s → s̄b
transition.
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The difficult part is to calculate the matrix elements of the quark operators
between the mesonic states, which is a non-perturbative issue. This has been
done by lattice simulations [3, 4] or by quark models [5]. The hadronic matrix
element is, as for K−K mixing, parameterized through the so called B- (“bag”-)
parameter which is by construction equal to one in the naive limit when vacuum
states are inserted between the quark currents in the B − B mixing operator.

In a previous paper [6], K − K mixing was calculated within a chiral quark
model (χQM) combined with chiral perturbation theory. Within the χQM, non-
factorizable contributions can also be calculated in terms of gluon condensates.
The purpose of this paper is to perform a similar analysis for B − B mixing.
We are using a recently developed heavy-light chiral quark model (HLχQM) [7],
where non-factorizable effects can be incorporated by means of gluon condensates
and chiral loops.

2 B − B mixing and heavy quark effective theory

At quark level, the standard effective Lagrangian describing B − B mixing is
[2]:

L∆B=2
eff = − G2

F

4π2 M2
W (V ∗

tbVtq)
2

S0 (xt) ηB b(µ) Q(∆B = 2) , (1)

where GF is Fermi’s coupling constant, the V ’s are KM factors [8] (for which
q = d or s for Bd and Bs respectively) and S0 is the Inami-Lim function [9] due
to short distance electroweak loop effects for the box diagram:

S0(x) =
4x − 11x2 + x3

4(1 − x)2
− 3x3 Log x

2(1 − x)3
. (2)

In our case, x = xt ≡ m2
t /M

2
W , where mt is the top quark mass. Because of

its large mass, the top quark gives the dominant contribution. Also the u and c
quarks are running in the loop, but these contributions are KM suppressed. The
quantity Q(∆B = 2) is a four quark operator:

Q(∆B = 2) = qL γα bL qL γα bL , (3)

where qL (bL) is the left-handed projection of the q (b)-quark field. The quantities
ηB and b(µ) are calculated in perturbative quantum chromodynamics (QCD).
At the next to leading order (NLO) analysis it is found that ηB = 0.55 ± 0.01
[2]. Furthermore, for a renormalization point µ in perturbative QCD equal to or
below mb,

b(µ) = [αs(µ)]−6/23
[
1 +

αs(µ)
4π

J5

]
, (4)

where J5 = 1.63 in the naive dimension regularization scheme (NDR). At
µ = mb (= 4.8 GeV) one has b(mb) � 1.56.
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The matrix element of the operator Q(∆B = 2) between the meson states is
parameterized by the bag parameter BBq :

〈B|Q(∆B = 2)|B〉 ≡ 2
3
f2

BM2
BBBq (µ) . (5)

By definition, BBq = 1 within naive factorization, also named vacuum saturation
approach (VSA). This means to insert a vacuum state between the two heavy-
light currents in the operator Q(∆B = 2), and use the matrix elements defining
the decay constant fB :

〈0|qL γµ b|B(p)〉 =
i

2
fB pµ and 〈B(p)|qL γµ b|0〉 = − i

2
fB pµ .(6)

One may combine naive factorization with the large Nc expansion, where Nc is
the number of colours. Then one finds BBq = 3(1 + 1/Nc)/4, giving BBq = 3/4
in the (naive) large Nc limit. We will see later that there are important non-
factorizable contributions of order 1/Nc. In general, the matrix elements of the
operator Q(∆B = 2) are dependent on the renormalization scale µ, and thereby
BBq

depends on µ. As for K − K mixing, one defines a renormalization scale
independent quantity

B̂Bq
≡ b(µ)BBq

(µ) . (7)

Within lattice gauge theory, values for B̂Bq between 1.3 and 1.5 are obtained
[3, 4].

The mass difference between the weak eigenstates (BH and BL) are related
to the bag parameter in the following way for Bq = Bd, Bs:

∆mq =
G2

F

6π2 mBq
f2

Bq
B̂Bq

ηBM2
W S0

(
m2

t /M
2
W

) |V ∗
tqVtb|2 . (8)

In order to extract the KM matrix elements it is crucial to have a precise knowl-
edge of the bag parameter B̂Bq

, and the weak decay constant fBq
.

The b -quark is heavy compared to the typical hadronic scale of order 1 GeV,
where confinement and chiral symmetry breaking effects are essential. Pertur-
bative effects below the b-quark scale may then be calculated down to 1 GeV
by means of heavy quark effective theory (HQEFT. See [10] for a review). Thus
HQEFT also allows us to evolve the matrix element (3) from µ = mb down to 1
GeV.

HQEFT is a systematic expansion in 1/mb. The heavy quark field b(x) is
replaced by a “reduced” field, Q

(+)
v (x) or Q

(−)
v (x), which is related to the full

field the in following way:

Q(±)
v (x) = P±e∓imbv·xb(x) , (9)

where P± are projecting operators P± = (1 ± γ · v)/2. The reduced field Q
(+)
v

can only annihilate heavy quarks. In order to describe heavy anti-quarks one
has to use Q

(−)
v . In other words, Q

(+)
v (Q(−)

v ) annihilates (creates) a heavy quark
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(anti-quark) with velocity v. The Lagrangian for heavy quarks is (Qv = Q
(±)
v ):

LHQEFT = ±Qv iv · D Qv +
1

2mQ
Qv

(
−CM

gs

2
σ · G + (iD⊥)2eff

)
Qv + O(m−2

Q ) ,

(10)

where Dµ is the covariant derivative containing the gluon field (eventually also
the photon field), and σ · G = σµνGa

µνta, where σµν = i[γµ, γν ]/2, Ga
µν is the

gluonic field tensors, and ta are the colour matrices. This chromo-magnetic term
has a factor CM which is one at tree level, but slightly modified by perturba-
tive QCD effects below the scale mb . It has been calculated to NLO [12, 13].
Furthermore, (iD⊥)2eff = CD(iD)2 − CK(iv · D)2. At tree level, CD = CK = 1.
Here, CD is not modified by perturbative QCD, while CK is different from one
due to perturbative QCD corrections [11]. In our case, mQ = mb is the heavy
quark mass.

Running from µ = mb down to µ = Λχ = 1 GeV, there will appear more op-
erators. Some stem from the heavy quark expansion itself and some are generated
by perturbative QCD effects. The ∆B = 2 operator in Eq. (3) for Λχ < µ < mb

can be written [14, 15, 16]:

Q(∆B = 2) = C1(µ) Q1 + C2(µ) Q2 +
1

mb

(
6∑
i

ai(µ)Si(µ)

+
3∑
i

hi(µ)Xi(µ)

)
+ O(1/m2

b) . (11)

The operator Q1 is Q(∆B = 2) for b replaced by Q
(±)
v , while Q2 is generated

within perturbative QCD for µ < mb. The operators Si and Xi are taking
care of 1/mb corrections. The quantities C1, C2, ai, hi are Wilson coefficients.
(C1 = 1+O(αs) and C2 = 0+O(αs)). The explicit expressions for the operators
are

Q1 = 2 qL γµ Q(+)
v qL γµ Q(−)

v , (12)

Q2 = 2 qL vµ Q(+)
v qL vµ Q(−)

v , (13)

X1 = 2 qL iD/ Q(+)
v qL Q(−)

v + 2 qL iDµ Q(+)
v qL γµ Q(−)

v

−2 i ελµνρ vλ qL iDµγν Q(+)
v qL γρ Q(−)

v

+ 2 qL Q(+)
v qL iD/ Q(−)

v + 2 qL γµ Q(+)
v qL iDµ Q(−)

v

−i2 ελµνρ vλ qL γν Q(+)
v qL iDµγρ Q(−)

v , (14)

X2 = 8
[
iv · ∂(qL Q(+)

v )
]
qL Q(−)

v + 2
[
iv · ∂(qLγµ Q(+)

v )
]
qL γµ Q(−)

v ,(15)

X3 = 4
[
iv · ∂(qLγµ Q(+)

v )
]
qL γµ Q(−)

v . (16)

The operators Si are nonlocal and are combinations of the leading order opera-
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tors Q1,2 and a term of order 1/mQ from the effective Lagrangian (10):

S1

mb
= i

∫
dy4T{Q1(0), OK(y)} ,

S2

mb
= i

∫
d4yT{Q2(0), OK(y)} ,

S3

mb
= i

∫
d4yT{Q1(0), OM (y)} ,

S4

mb
= i

∫
d4yT{Q2(0), OM (y)} , (17)

where

OK ≡ 1
2mb

(
Q

(+)
v (iD⊥)2eff Q(+)

v + Q
(−)
v (iD⊥)2eff Q(−)

v

)
,

OM ≡ − gs

4mb

(
Q

(+)
v σ · G Q(+)

v + Q
(−)
v σ · G Q(−)

v

)
, (18)

are the kinetic and magnetic operators of Eq. (10). There are no mixing between
the local operators and the non-local operators, since the local operators do not
need the non-local ones as counter-terms. The Wilson coefficients ai will then
be products of C1,2 and CM,K . The Wilson coefficients C1 and C2 have been
calculated to NLO [14, 16] and for µ = Λχ, C1(Λχ) = 1.22 and C2(Λχ) = −0.15.
The coefficients h1,2,3 have been calculated to leading order (LO) in [15], and
the result at µ = Λχ is h1 = 0.52, h2 = −0.16 and h3 = −0.15.

3 The heavy-light chiral quark model

In order to calculate the matrix elements we will use the heavy-light chiral quark
model (HLχQM) recently developed in [7]. This is a type of quark loop model
[17, 18, 19, 20] where the quarks couples directly to the mesons at the scale of
chiral symmetry breaking Λχ, which we put equal to 1 GeV. What makes our
model [7] distinct from other similar models is that it incorporates soft gluon
effects in terms of the gluon condensate with lowest dimension [6, 21, 22, 23, 24].
The term in the Lagrangian describing this interaction can be obtained as a
mean-field approximation of the (extended) Nambu-Jona-Lasinio model (NJL)
[25, 20].

In this section we will give a short presentation of the HLχQM. In the next
section we will use the model [7] to calculate non-factorizable soft gluon effects
in B − B mixing.

The Lagrangian for the HLχQM is

LHLχQM = LHQEFT + LχQM + LInt . (19)

The first term is given in Eq. (10). The light quark sector is described by the
chiral quark model (χQM), having a standard QCD term and a term describing
interactions between quarks and (Goldstone) mesons:

LχQM = χ [γµ(iDµ + Vµ + γ5Aµ) − m] χ − χM̃q χ , (20)
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where χL,R are the flavour rotated quark fields given by:

χL = ξ†qL ; χR = ξqR ; ξ · ξ = Σ . (21)

where qT = (u, d, s) are the light quark fields. The left- and right-handed pro-
jections qL and qR are transforming after SU(3)L and SU(3)R respectively. The
quantity ξ is a 3 by 3 matrix containing the (would be) Goldstone octet (π, K, η):

ξ = eiΠ/f where Π =
λa

2
φa(x) =

1√
2




π0√
2

+ η8√
6

π+ K+

π− − π0√
2

+ η8√
6

K0

K− K0 − 2√
6
η8


 ,

(22)

where f is the bare pion decay constant. In (20), m is the (SU(3) - invariant)
constituent quark mass for light quarks, and M̃q contains the current quark mass
matrix Mq and the field ξ:

M̃q ≡ M̃V
q + M̃A

q γ5 , where (23)

M̃V
q ≡ 1

2 (ξ†M†
qξ

† + ξMqξ) and M̃A
q ≡ − 1

2 (ξ†M†
qξ

† − ξMqξ) . (24)

The vector and axial vector fields Vµ and Aµ in (20) are given by:

Vµ ≡ i

2
(ξ†∂µξ + ξ∂µξ†) ; Aµ ≡ − i

2
(ξ†∂µξ − ξ∂µξ†) . (25)

Furthermore, the covariant derivative Dµ in (20) contains the soft gluon field
forming the gluon condensates. The gluon condensate contributions are calcu-
lated by Feynman diagram techniques as in [6, 7, 22, 23]. They may also be
calculated by means of heat kernel techniques as in [21, 25, 26].

The interaction between heavy meson fields and heavy quarks are described
by the following Lagrangian:

LInt = −GH

[
χa H

(±)
a Q(±)

v + Q
(±)
v H(±)

a χa

]
+

1
2G3

Tr
[
Ha

v Ha
v

]
, (26)

where GH and G3 are coupling constants and H
(±)
a is the heavy meson field

containing a spin zero and spin one boson:

H
(±)
a ≡P±(P (±)

aµ γµ − iP
(±)
5a γ5) , H

(±)
a ≡ γ0(H(±)

a )†γ0 . (27)

The fields P (+)(P (−)) annihilates (creates) a heavy meson containing a heavy
quark (anti quark) with velocity v.

Integrating out the quarks by using (10), (20) and (26), the effective La-
grangian up to O(m−1

Q ) can be written as [27, 7]:

L = ∓Tr
[
H

(±)
a (iv · Dba − ∆Q) H

(±)
b

]
− gA Tr

[
H

(±)
a H

(±)
b γµγ5Aµ

ba

]
, (28)

where iDµ
ba = iδbaDµ − Vµ

ba. The term proportional to the quark-meson mass
difference ∆Q = MH−mQ in (28) is irrelevant for us due to the reparametrization
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invariance [10]. Also, it does not enter our loop integrals because our heavy meson
fields are attached to our quark loops at zero external momentum. (The external
momentum includes the piece vµ∆Q). As shown in [7], the term ∼ 1/G3 in (26)
is related to ∆Q, and this term is also irrelevant within the present paper.

To obtain (28) from the HLχQM one encounters divergent loop integrals,
which might be quadratic-, linear- and logarithmic divergent. For the kinetic
term in (28) we obtain the identification:

−iG2
HNc

(
I3/2 + 2mI2 − i

(3π − 8)
384m3Nc

〈αs

π
G2〉
)

= 1 , (29)

where I3/2 and I2 are the linear and logarithmic divergent integrals respectively,
and 〈αs

π G2〉 is the gluon condensate. To obtain the axial vector term proportional
to gA, we obtain a similar condition, and combining it with (29), we obtain for
the axial vector term

gA = 1 +
4
3
iG2

HNc

(
I3/2 − im

16π

)
, (30)

such that the (formally) linear divergent integral I3/2 is related to the strong axial
coupling gA (or strictly speaking, its deviation from one). Analogously, within
the pure light quark sector (the χQM), it is well known that the quadratic and
logarithmic divergent integrals are related to the quark condensate and the bare
decay constant f , respectively [17, 21, 22, 23, 26]:

〈 qq 〉 = −4imNcI1 − 1
12m

〈αs

π
G2〉 , (31)

f2 = −i4m2NcI2 +
1

24m2 〈αs

π
G2〉 . (32)

The divergent integrals I1, I2 and I3/2 are listed in appendix A. The effective
coupling GH describing the interaction between the quarks and heavy mesons
can be expressed in terms of m, f , gA, and the mass splitting between the 1−

state and 0− state. Using (29), (30), (32) one finds a relation between this mass-
splitting and the gluon condensate via the chromomagnetic interaction in (10)
[7]:

〈αs

π
G2〉 =

16f2

πη

µ2
G

ρ
, G2

H =
2m

f2 ρ , η ≡ (π + 2)
π

CM (Λχ) , (33)

where

ρ ≡
(1 + 3gA) + µ2

G

η m2

4(1 + Ncm2

8πf2 )
, µ2

G(H) =
3
2
mQ(MH∗ − MH). (34)

In the limit where only the leading logarithmic integral I2 is kept we obtain:

gA → 1 , ρ → 1 , GH → G
(0)
H ≡

√
2m

f
. (35)
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Note that gA = 1 is the non-relativistic value [27]. We observe that the mass-
splitting between H and H∗ sets the scale of the gluon condensate. This means
that, while in [23] the gluon condensate was fitted to the K → (2π)I=2 amplitude,
it is here determined in the strong sector alone (with a slightly lower value than
in [23]).

The 1/mQ corrections to the strong Lagrangian have been calculated in [7].
They may formally be put into spin dependent renormalization factors. This
means that (28) is still valid with the replacement Hr = H (ZH)− 1

2 , where ZH

and the renormalized (effective) coupling g̃A are defined as:

Z−1
H = 1 +

ε1 − 2dMε2

mQ
, (36)

g̃A = gA

(
1 − 1

mQ
(ε1 − 2dAε2)

)
− 1

mQ
(g1 − dAg2) , (37)

where

dM =

{
3 for 0−

−1 for 1− dA =

{
1 for H∗H coupling

−1 for H∗H∗ coupling
(38)

and:

ε1 = −m + G2
H

( 〈 qq 〉
4m

+ f2 +
Ncm

2

16π
+

CK

16
(
〈 qq 〉
m

− f2)

+
1

128m2 (CK + 8 − 3π)〈αs

π
G2〉
)

, (39)

g1 = m − G2
H

( 〈 qq 〉
12m

+
f2

6
+

Ncm
2(3π + 4)
48π

− CK

16
(
〈 qq 〉
m

+ 3f2)

+
1

64m2 (CK − 2π)〈αs

π
G2〉
)

, (40)

g2 =
(π + 4)
(π + 2)

µ2
G

6m
. (41)

4 Bosonizing Q(∆B = 2)

In this section we will discard 1/mQ terms. We are then left with the operators
Q1,2 defined in Eq. (12) and (13). In order to find the matrix element of Q1,2 ,
one uses the following relation between the generators of SU(3)c (i, j, l, n are
colour indices running from 1 to 3):

δijδln =
1

Nc
δinδlj + 2 tain talj , (42)

where a is an index running over the eight gluon charges. This means that by
means of a Fierz transformation, the operator Q1 in (12) may also be written in
the following way:

Q1 =
2

Nc
qL γµ Q(+)

v qL γµ Q(−)
v + 4 qL ta γµ Q(+)

v qL ta γµ Q(−)
v , (43)
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Fig. 1. Diagrams for bosonization of the left handed quark current

and similarly for Q2.
The first (naive) step to calculate the matrix element of a four quark operator

like Q1 is by inserting vacuum states between the two currents. This vacuum
insertion approach (VSA) corresponds to bosonizing the two currents in Q1 and
multiply them, as mentioned below Eq. (5). For one current, visualized in Fig. 1,
one obtains [27, 7]:

qL γµ Q(±)
v −→ αH

2
Tr
[
ξ†
hfγαL H

(±)
h

]
, (44)

Using the relations (29) - (32) for the divergent integrals, and also Eq. (33), we
obtain [7]:

αH =
GH

2

(
−〈 qq 〉

m
− 2f2(1 − 1

ρ
) +

(π − 2)
16m2 〈αs

π
G2〉
)

. (45)

This bosonization has to be compared with the matrix elements defining the
meson decay constant fB given in Eq. (6). In those relations, b is the full quark
field. Within HQEFT this matrix element will, below the renormalization scale
µ = mQ (= mb), be modified in the following way:

〈0|qL Γµ Q(+)
v |B(p)〉 =

i

2
fB MB vµ

and
〈B(p)|qL Γµ Q(−)

v |0〉 = − i

2
fB MB vµ , (46)

where [10]

Γµ ≡ Cγ(µ) γµ + Cv(µ) vµ . (47)

The coefficients Cγ,v(µ) are determined by QCD renormalization for µ < mQ.
They have been calculated to NLO and the result is the same in MS and MS
scheme [28]. In HLχQM the decay constant fB can be calculated and the result
is [7]:

αH =
fB

√
MB

Cγ(µ) + Cv(µ)
=

fB∗
√

MB∗

Cγ(µ)
. (48)

The second matrix element in (43) is genuinely non-factorizable, and we have
to go beyond the VSA. However, in the approximation where only the lowest
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B B
Γ Γ

Fig. 2. Nonfactorizable contribution, Γ ≡ ta γµ L

gluon condensate is taken into account, the last term in (43) can be written in
a quasi-factorizable way by bosonizating the heavy-light coloured current with
an extra colour matrix ta inserted and with an extra gluon emitted as shown in
Fig. 2. Calculation of this diagram is straightforward when using the light quark
propagator with just one soft gluon emitted:

SG(k) ≡ gs

4
Gb

αβtb
[
σαβ(γ · k + m) + (γ · k + m)σαβ

]
(k2 − m2)−2 . (49)

The part of the diagram to the left in Fig. 2 then gives the bosonized coloured
current:
(
qLta γαQ(±)

v

)
1G

−→ −GHgs

8
Ga

µν

Tr

[
ξ†γαL H(±)

(
±i I2 {σµν , γ · v} +

1
8π

σµν

)]
,(50)

where I2 is to be identified with f2 by the use of Eq. (32). The result for the
right part of the diagram with B̄ replaced by B is obtained by just changing
the sign of v and letting P

(+)
5 → P

(−)
5 (remembering that P

(−)
5 creates a meson

with a heavy anti quark). Multiplying the coloured currents, we obtain for the
non-factorizable part of Q1 and Q2 to first order in the gluon condensate:

C1 qLta γµQ(+)
v qLta γµ Q(−)

v + C2 qLta vµQ(+)
v qLta vµ Q(−)

v

→ −βB

4
〈αs

π
G2〉
(

C1P
(−)
5i Σ†

iiP
(+)
5i + (C1 − 1

3
C2) P

(−)µ
i Σ†

iiP
(+)
iµ

)
, (51)

where

βB ≡ G2
H

128

{
1 +

4π

Nc

(
f

m

)2

+
8π2

N2
c

(
f

m

)4
}

, (52)

and Σ = ξ2, where ξ is given in Eq. (22). Note there is no sum over i, i = 2, 3
for q = d, s respectively.

The Lagrangian in Eq. (20) contains couplings involving the the current mass
term and the chiral quark fields. This makes it possible to calculate the counter-
terms needed in order to keep the chiral Lagrangian finite after the inclusion
of chiral loops. The counter-term for the factorizable part of the amplitude has
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�
ξ†Γα +

�
ξ†Γα

Fig. 3. Mass insertion in the nonfactorizable part of the current

been considered in [7] when calculating fB . In the case of the non-factorizable
part of the amplitude, we need to consider similar diagrams as those shown in
Fig. 2, with mass insertion like in Fig. 3, where mass insertion is indicated by a
cross on the light quark line. The bosonized current with mass insertion is

(
qLta γαQ(±)

v

)
1G,mq

−→
GHgs

32mπ2 εαβµρ(±vα)Ga
µρ Tr

[
ξ†γαL H(±)

a

(
M̃V

q

)
aq

γβγ5

]
. (53)

This result can also be obtained by simply differentiating the right hand side of
Eq. (50) with respect to m.

The bosonized version of the Q(∆B = 2) operator can then be split in a
pseudo scalar and a vector part:

Q(∆B = 2)Bos. = AP P
(−)
5i Σ†

iiP
(+)
5i + AV P

(−)µ
i Σ†

iiP
(+)
iµ , where:

AP =
1
2
(1 +

1
Nc

)(C1 − C2)α2
H

(
1 + 2

ω1

αH
mq

)
− C1〈αs

π
G2〉 (βB + ωβmq) , (54)

AV =
1
2
(1 +

1
Nc

)C1α
2
H

(
1 + 2

ω1

αH
mq

)
− 〈αs

π
G2〉
(

(C1 − C2

3
)βB + C1ωβmq

)
.

The quantity ωβ is the counter-term obtained from (53), and ω1 is a counter-term
for fBs found in [7]:

ωβ =
G2

H

64πm

{
1 +

4πf2

Ncm2

}
, (55)

ω1 =
(1 − 3gA)

GH
− (9π − 16)GH

192m3 〈αs

π
G2〉 . (56)

For the current quark mass entering (54) we will use

md = −m2
πf2/〈 qq 〉 , and ms = −m2

Kf2/〈 qq 〉 . (57)

The term including the vector fields Pµ are needed in order to calculate chiral
corrections where B∗ are included. From Eqs. (5), (7) and (54) the renormaliza-
tion invariant bag parameter can be extracted. Anticipating the results of the
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two next sections, it can be written in the form:

B̂Bq
=

3
4

b̃

[
1 +

1
Nc

(
1 − δB

G(1 +
τG
χ

32π2f2 )

)
+

τb

mb
+
(

1 +
1

Nc

)
τχ

32π2f2

]
,

(58)

where

b̃ = b(mb)
[

C1 − C2

(Cγ + Cv)2

]
µ=Λχ

. (59)

We find from (54) the parameter due to genuine non-factorizable effects:

δB
G = Nc〈αs

π
G2〉 βB

α2
H

[
2C1

C1 − C2

]
µ=Λχ

. (60)

Note that this parameter is formally of order (Nc)0 and is positive, which means
that this non-factorizable contribution reduces the value of B̂ according to (58).
Thus we are qualitatively in agreement with [5], where a negative contribution
to the bag factor from gluon condensate effects is found.

Using the relation between αH and fB in Eq. (48) and the expression value
for GH in Eq. (33), we may also write:

δB
G =

Nc〈αs

π G2〉
32π2f2f2

B

m

MB
ρ

{
1 +

4π

Nc

(
f

m

)2

+
8π2

N2
c

(
f

m

)4
} [

C1

C1 − C2

]
µ=Λχ

.

(61)

Numerically, f and fB are of the same order of magnitude, and δB
G is therefore

suppressed like m/MB compared to the corresponding quantity

δK
G = Nc

〈αs

π G2〉
32π2f4 , (62)

for K − K mixing. However, one should note that fB scales as 1/
√

MB within
HQEFT, and therefore δB

G is still formally of order (mb)0.
The formula (58) is a generalization of a similar formula found for K − K

mixing [6]. The quantities τb and τG
χ will be calculated in the next sections,

while τχ is known from previous work [29]. More specific, the quantity τb, to be
calculated in the next section, has dimension (mass)1 and depend on hadronic
parameters calculated within the HLχQM. Similarly, the quantity τχ contains
the chiral corrections to the bosonized versions of Q1,2 to be presented in section
VI. The quantity τG

χ contains the chiral corrections proportional to 〈αs

π G2〉 and
the counter-terms ωβ and ω1.

5 1/mQ corrections

The 1/mQ corrections have been defined in Eq. (14-17). In the HLχQM we only
need to consider (14) and (17). This is due to the fact that when we are consid-
ering terms in the effective Lagrangian for B − B mixing the external particles
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carry no redundant momenta [7]. (In other words, the B-mesom momenta are
pB = MBv). Hence the operators in (15) and (16) will give zero contribution.

The operator in Eq. (14) can be written on the form

X1 = 2
3∑

j=1

q Γj i Dα Q(+)
v q Θj Q(−)

v + 2
6∑

j=4

q Γj Q(+)
v q Θj i Dα Q(−)

v , (63)

where Γα, Θ are defined:

Γ1 = R γα Θ1 = R

Γ2 = R gµα Θ2 = R γµ

Γ3 = −i ελανρ vλ R γν Θ3 = R γρ

Γ4 = R Θ4 = R γα

Γ5 = R Θ5 = R gµα

Γ6 = −i ελανρ vλ R γρ Θ6 = R γν , (64)

where Dα is the covariant derivative containing the gluon field. Note that the
operator X1 is Fierz symmetric [15]. We bosonize X1 in the same way as Q1,2.

Some two-quark operators appearing in (63) are already studied in [7] when
calculating 1/mb corrections to fB . We use those results when bosonizing X1,
and the result can be written:

X1 → Xbos
1 =

3∑
i=1

{
2(1 +

1
Nc

)
αH

2
Tr
[
ξ†Θi H(−)

v

] 1
2
Tr
[
ξ†Γi H(+)

v (αγ
3γα + αv

3v
α)
]

+ 4β1Tr
[
ξ†ΘiH

(−)
v (−β2 {σµν , γ · v} + β4σ

µν)
}

Tr
[
ξ†ΓiH

(+)
v (β3Dµνα + 2mβ2σµνvα)

}}

+
6∑

i=4

{
2(1 +

1
Nc

)
αH

2
Tr
[
ξ†Γi H(−)

v (αγ
3γα − αv

3v
α)
] 1

2

Tr
[
ξ†Θi H(+)

v

]
(65)

+ 4β1Tr
[
ξ†ΓiH

(−)
v (β3Dµνα − 2mβ2σµνvα)

]

Tr
[
ξ†ΘiH

(+)
v (β2 {σµν , γ · v} + β4σ

µν)
]
〉
}

,

where Dµνα ≡ {σµν , γβ} (gαβ − vαvβ). The second and fourth lines are genuinely
non-factorizable. The α’s and β’s are hadronic parameters calculated within
the HLχQM, and are given in Appendix B. Evaluating the sums and traces in
Eq. (65) we arrive at:

Xbos
1 =

{
αHαγ

3 (1 +
1

Nc
) + 〈αs

π
G2〉β(2)

B

}
(
−P

(−)µ
i Σ†

iiP
(+)
iµ + 3P

(−)
5i Σ†

iiP
(+)
5i

)
, (66)
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where β
(2)
B is a combination of the βi’s and can be written

β
(2)
B ≡ π

4Nc
(1 − gA)

(
1 +

4π

3Nc

(
f

m

)2
)

. (67)

The bosonating of the nonlocal operators is rather straight forward in this
model. The result for the factorizable part of the non local operators can be
found in [7] in the calculation of fB :

4∑
i=1

AiS
Fact
i

mb
→ −

(
1 +

1
Nc

)
αH

mbGH

(
µ2

π − dM
µ2

G

3

)

×
[
C1P

(−)µ
i Σ†

iiP
(+)
iµ + (C1 − C2)P

(−)
5i Σ†

iiP
(+)
5i

]
. (68)

The result for the nonfactorizable part of the operators is:
4∑

i=1

AiS
Nfact
i

mb
→

1
mb

〈αs

π
G2〉βK

(
(C1 − 1

3
C2)P

(−)µ
i Σ†

iiP
(+)
iµ + C1P

(−)
5i Σ†

iiP
(+)
5i

)

+
1

mb
〈αs

π
G2〉CM

(
C1β

(1)
M + C2β

(2)
M

) [
−P

(−)µ
i Σ†

iiP
(+)
iµ + 3P

(−)
5i Σ†

iiP
(+)
5i

]
,

(69)

where the quantities βK and β
(1,2)
M ’s are given in Appendix B.

We need fB which has been calculated in [7] to 1/mb:

fH

√
MH = αH(Cγ + Cv)

(
1 +

κb

mb
+

κχ

32π2f2

)
, where:

κb = − (ε1 − 6ε2)
2

+
(Bγαγ

3 + Bvαv
3)

2αH(Cγ − Cv)
− (µ2

π − µ2
G)

GHαH

κχd
= −11

18

{
−m2

K(1 + gA2) + m2
K(ln

m2
K

µ2 +
2
11

ln
4
3
)(1 + 3gA2)

}
,(70)

κχs = −13
9

{
−m2

K(1 + gA2) + m2
K(ln

m2
K

µ2 +
4
13

ln
4
3
)(1 + 3gA2)

}

+
ω132π2f2

αH
ms ,

where Bγ and Bv are sums of Wilson coefficients. The contribution to the bag
parameter from 1/mb corrections can now be extracted (see Eq. (58)):

τb =
(

1 +
1

Nc

){
αγ

3

αH

(
6B1

C1 − C2
− Bγ

Cγ + Cv

)
− αv

3

αH

Bv

(Cγ + Cv)

}

+
6C1

(C1 − C2)α2
H

〈αs

π
G2〉
{

B1

C1
β

(2)
B +

βK

3
+ CMβ

(1)
M +

C2CM

C1
β

(2)
M

}
.

(71)

It should be noted that 1/mb corrections increases B̂, in agreement with [15].
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Fig. 4. Diagrams contributing to the bag parameter

6 Chiral corrections

We will only consider chiral corrections to Q1,2 in Eqs. (12) and (13). Adding
chiral corrections to operators proportional to 1/mQ will be considered as higher
order. The chiral corrections to the bag parameter have been considered in [29].
Some of the corrections are simply corrections to fBq [30, 31, 32]. The diagrams
shown in Fig. 4 are those which are genuinely non-factorizable, i.e. they are not
included in chiral corrections to fBq

.
The chiral corrections (τχ) to the bag parameter can then be written:

τχ = dχ

{
−2

9
m2

K ln
(

4m2
K

3µ2

)
− 2

9
m2

K (72)

+
C1

C1 − C2
gA2
(

(
2
3
m2

K − ∆2) ln
(

4m2
K

3µ2

)

−8
9
m2

K +
8
3
∆2( 2 − 3F (∆/mη) )

)}
,

τG
χ = dχ

{
−2

9
m2

K ln
(

4m2
K

3µ2

)
− 2

9
m2

K

+
C1 − C2/3

C1
gA2
(

(
2
3
m2

K − ∆2) ln
(

4m2
K

3µ2

)

−8
9
m2

K +
8
3
∆2( 2 − 3F (∆/mη) )

)}

−ds

(
ωβ

βB
+ 2

ω1

αB

)
32π2f2 ms , (73)
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�H(+)∗H(+)
i j, µ − 2 i gA kµ Πij

�H(−)∗H(−)
i j, µ 2 i gA kµ Πij

�H(k)
i j

i

2(v · k − ∆)
δij

�H∗(k)
i, µ j, ν − i(gµν − vµvν )

2(v · k − ∆)
δij

Fig. 5. Feynman rules for the strong sector, Π is given in Eq. (22)

where we have ignored the pion mass and used the mass relations m2
η8

= 4m2
K/3.

The function F (x) is defined in Eq. (83) and:

dχ =

{
1 for Bd

4 for Bs

and ds =

{
0 for Bd

1 for Bs

(74)

If one ignores the counter-term given by ωβ , and take the limit ∆ ≡ M∗
H −MH →

0, we obtain the same result as in [29]. For the bare coupling constant f we will
use the value f=86 MeV [32]. The Feynman rules for chiral loops are given in
Fig. 5.

7 Numerical results

The model dependent parameters of the HLχQM was fixed in [7] by using various
constraints. For instant, the constituent light quark mass was determined to be
m = 220 ± 30 MeV. Using the parameters from [7], we obtain (using ∆ =
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Leading Order (LO)
LO + χ

LO + 1/mQ + χ

m (GeV)

B̂
B

d

0.300.280.260.240.220.200.18

2.00

1.80

1.60

1.40

1.20

1.00

Fig. 6. The bag parameter B̂ for Bd

M∗
H − MH = 0.025 GeV):

τb = (0.26 ± 0.04) GeV δB
G = (0.5 ± 0.1)

τχd
= −(0.02 ± 0.01) GeV2 τχs = −(0.10 ± 0.04) GeV2

τG
χd

= −(0.03 ± 0.01) GeV2 τG
χs

= (0.12 ± 0.06) GeV2

B̂Bd
= 1.53 ± 0.05 B̂Bs = 1.48 ± 0.08

fBd
= (170 ± 25) MeV fBs

= (180 ± 25) MeV

fBd

√
B̂Bd

= (215 ± 30) MeV fBs

√
B̂Bs = (225 ± 30) MeV

ξ = fBs

√
B̂Bs

fBd

√
B̂Bd

= 1.05 ± 0.01
fBs

fBd

= 1.08 ± 0.02 (75)

The decay constants fBd
and fBs were also given in [7], but are listed also here

for completeness. (Note, however, that the values are slightly different, because
in [7] we did not distinguish fπ from the bare coupling f .) The values for the
bag parameter B̂ are in agreement with lattice calculations [3, 4]. A plot of B̂
as a function of the constituent quark mass m is shown in Fig. 6 and 7. We
observe that the values of B̂ are fairly stable over a large variation of light quark
constituent mass m. Especially this is the case for Bd. From m = 180 MeV
and m = 300 MeV the bag factors only changes with 10%. We note that 1/mb

corrections are small.
The values for the fB ’s and especially for the ratio fBs

/fBd
(and ξ) in (75) are

a bit low [3, 33]. There might be at least three reasons for this. First, concerning
the absolute value for fB ’s, they dependent significantly on the value of the quark
condensate, as seen from Eqs. (45) and (48). In [7] we used the “standard” value
〈 qq 〉 = (−240 MeV)3, without any uncertainty. It could be argued that we should
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Leading Order (LO)
LO + χ

LO + 1/mQ + χ

m (GeV)

B̂
B

s

0.300.280.260.240.220.200.18

2.00

1.80

1.60

1.40

1.20

1.00

Fig. 7. The bag parameter B̂ for Bs

have used an uncertainty of 10 MeV, say, for 〈 qq 〉1/3, although the wide range
190 to 250 MeV used for m will to some extent compensate for this. Second, it
might be that our expansion within the HLχQM overestimates the counter-term
ω1 which reduces fBs . However, neglecting this counter-term would give the
high value fBs/fBd

� 1.3. Third, our value for the axial pion coupling gA in (28)
might be too low. In [7] we used input from QCD sum rules [34] both in the B-
and D-sectors. Alternatively, we may use the experimental value for the effective
coupling gAH∗Hπ = 0.59±0.09 in the D-sector [35], giving almost the same bare
coupling gA = 0.59±0.04. Using this bare coupling also in the B-sector (instead
of gA = 0.42 ± 0.06 in [7]), and in addition 〈 qq 〉1/3 = (−240 ± 10) MeV, we
obtain an alternative set of values:

τb = (0.25 ± 0.04) GeV δG = (0.5 ± 0.2)
τχd

= −(0.06 ± 0.01) GeV2 τχs
= −(0.25 ± 0.04) GeV2

τG
χd

= −(0.07 ± 0.01) GeV2 τG
χs

= (0.2 ± 0.2) GeV2

B̂Bd
= 1.51 ± 0.09 B̂Bs = 1.37 ± 0.14

fBd
= (190 ± 50) MeV fBs = (210 ± 70) MeV

fB

√
B̂Bd

= (240 ± 70) MeV fBs

√
B̂Bs

= (260 ± 90) MeV

ξ = fBs

√
B̂Bs

fBd

√
B̂Bd

= 1.08 ± 0.07
fBs

fBd

= 1.14 ± 0.07 (76)

We observe that the value for fBs
/fBd

in (76) is close to the standard one.
To conclude, we have calculated the bag parameter B̂ for the Bd and Bs

mesons. Combining our two alternative sets of values (and consider the range of
values) we find B̂Bd

= 1.51 ± 0.09 and B̂Bs
= 1.40 ± 0.16. The value for B̂Bs

is
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more sensitive to chiral loops and counter-terms, and therefore the uncertainty
is bigger.

In principle, B̂ is renormalization invariant (µ independent). This cannot be
shown within our approach. By construction, perturbative QCD within HQEFT,
the HLχQM and chiral perturbation theory are matched at the scale Λχ. How-
ever, we have a reasonable good matching numerically as in [23]. Varying the
renormalization scale µ = Λχ in the range 0.8 GeV to 1 GeV, the bag parameters
only change with 6%. Moreover, like in [6], the formula (58) nicely shows the
various parts building up the total result for B̂.

A Loop integrals

The divergent integrals entering in the bosonization of the HLχQM are defined:

I1 ≡
∫

ddk

(2π)d

1
k2 − m2 (77)

I3/2 ≡
∫

ddk

(2π)d

1
(v · k)(k2 − m2)

(78)

I2 ≡
∫

ddk

(2π)d

1
(k2 − m2)2

(79)

The integrals needed in the calculation of chiral corrections to the bag parameter
are:

Lm,∆
1,1 =

∫
ddk

(2π)d

1
(k2 − m2)(v · k − ∆)

=
−i∆

8π2

(
1
ε̄

− ln(m2) + 2 − 2F (m/∆)
)

(80)

∫
ddk

(2π)d

kµkν

(k2 − m2)(v · k − ∆)
= A gµν + B vµvν

A =
1

d − 1

∫
ddk

(2π)d

k2 − (v · k)2

(k2 − m2)(v · k − ∆)

=
i∆

16π2

{
(−1

ε̄
+ ln(m2) − 1)(m2 − 2

3
∆) − 4

3
F (m/∆)(∆2 − m2)

−4
3
(m2 − 5

6
∆2)
}

(81)

B = −A +
∫

ddk

(2π)d

(v · k)2

(k2 − m2)(v · k − ∆)

=
−i∆

16π2

{
(−1

ε̄
+ ln(m2) − 1)(2m2 − 8

3
∆) − 4

3
F (m/∆)(4∆2 − m2)

−4
3
(m2 − 7

3
∆2)
}

(82)
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where:

F (x) =

{
−√

x2 − 1 tan−1(
√

x2 − 1) x > 1√
1 − x2 tanh−1(

√
1 − x2) x < 1

(83)

In the case of ∆ > m we have ignored an analytic real part in (80). Equation
(80) coincides with the one obtained in [30] however Eq. (82) differs by a factor
−2/3(m2 − 2/3∆2) inside the parenthesis of the expressions for A and B. This
is presumably due to the factor 1/(d − 1) = (1 − 2/3ε)/3 in A.

B Some detailed expressions for hadronic parameters

The parameters of Eq. (65) are:

αγ
3 ≡ m

3
αH +

GH

6
〈 qq 〉

αv
3 ≡ m

3
αH +

2
3
GH〈 qq 〉

β1 ≡ G2
Bπ2

12
〈αs

π
G2〉

β2 ≡ − f2

4m2Nc

β3 ≡ − δgA
4G2

BNc

β4 ≡ 1
8π

(84)

The β
(1,2)
K,M ’s in (69) are given by:

β
(1)
K =

m

256π2 G2
B

{
1 +

4
π

− 8π

Nc

(
f

m

)2

(1 +
1
ρ

− π) − 32π2

N2
c

(
f

m

)4

−CK

[
8π

Nc

(
f

m

)2

+
16π2

N2
c

(
f

m

)4
] }

(85)

β
(1)
M = − π2

12N2
c

(
f

m

)2

(86)

β
(2)
M =

π

24Nc

{
1 +

2π

Nc

(
f

m

)2
}

(87)
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33. D. Bećirević, S. Fajfer, Saša Prelovšek, Jure Zupan, e-Print Archive: hep-

ph/0211271.
34. V. Belyaev, V. Braun, A. Khodjamirian, R. Rückl, Phys. Rev. D51 (1995) 6177
35. A. Anastassov et al. Phys. Rev. D 65 (2002) 032003

http://link.springer.de/link/service/journals/10052/index.htm


	Introduction
	relax mathversion {bold}$Btmspace +thinmuskip {.1667em}-tmspace +thinmuskip {.1667em}@@overline {B}$ mixing and heavy quark effective theory
	The heavy-light chiral quark model
	relax mathversion {bold}Bosonizing $Q(Delta B=2)$
	relax mathversion {bold}$1/m_Q$ corrections
	Chiral corrections
	Numerical results
	Loop integrals
	Some detailed expressions for hadronic parameters

